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Introduction and background



Introduction and background
Singular Integral Equations

▶ Singular integral equations of the first kind with Cauchy-type kernels are a class of
mathematical equations that arise in the field of integral equations.

▶ The general form of a singular integral equation of the first kind with a Cauchy-type
kernel is given by:

−
∫ b

a

φ(t)
t − x

dt = f (x), a < x < b, (1)

where the forcing function f (x) is given and the function φ(t) is the unknown
function to be determined.

▶ The singularity in the kernel occurs when x is equal to t , leading to challenges in the
analysis and solution of these equations. 2



Introduction and background
Singular Integral Equations

▶ Singular integral equations play a crucial role in various branches of applied
mathematics and physics, such as potential theory, elasticity, and fluid dynamics.

▶ They often arise in problems involving boundary value conditions and are used to
model physical phenomena in diverse areas.

▶ The study of singular integral equations involves techniques from functional analysis,
complex analysis, and integral transforms.

▶ Solving these equations can be challenging due to their singular nature, and various
methods, such as regularization techniques, numerical methods, and special
function expansions, are often employed to obtain solutions. 3



Problem statement



Problem statement
Cauchy-type singular integral equation

▶ Consider the problem of solving the singular integral equation given by [1]

1
π

d
dx

(
−
∫ 1

0

φξ(ξ)

ξ − x
dξ

)
= 1, 0 ⩽ x ⩽ 1, (2)

subject to the boundary conditions

φx(0) = 0, φ(1) = 0. (3a-b)

▶ We want to solve (2) subject to (3a-b) both analytically and numerically.
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Analytical solution



Analytical solution

▶ We begin by integrating equation (2) with respect to x , resulting in the derivation of
the characteristic singular integral equation:

−
∫ 1

0

φξ(ξ)

ξ − x
dξ = πx + A. (4)

where A is an arbitrary constant.
▶ Using the standard inversion formula [2], we obtain the inverse of (4) as

φx(x) =
C√

x(1 − x)
− 1

π2
√

x(1 − x)
−
∫ 1

0

√
ξ(1 − ξ)(πξ + A)

ξ − x
dξ. (5)
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Analytical solution

▶ When evaluated

−
∫ 1

0

√
ξ(1 − ξ)(πξ + A)

ξ − x
dξ =

π

8

(
1 + 4x − 8x2

)
+

Aπ
2

(1 − 2x) . (6)

▶ Integration of (5) yields, given (6)

φ(x) = 2C sin−1 (√x
)
+

(
x
2
+

1
4
+

A
π

)√
x(1 − x) + B, (7)

where A,B and C are unknown constants.
▶ The solution in (7) contains three unknown constants. We will therefore need three

conditions to solve for the three unknowns. We will now assume

φ(0) =
3π
8
. (8)
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Analytical solution

▶ Using the boundary conditions (2) and (8), we find

A = −π, B =
3π
16

and C = −3
8
. (9)

▶ Therefore, the analytical solution is given by

φ(x) = −3
4
sin−1 (√x

)
+

(
3
4
− x

2

)√
x(1 − x) +

3π
8
. (10)
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Numerical method
A conventional numerical discretisation

▶ We divide the interval [0,1] into n-equally spaced sub-intervals [ξj , ξj+1] of length
h = 1/n where 0 ⩽ j ⩽ n − 1.

▶ Let P(x) be defined as

P(x) = −
∫ 1

0

φξ(ξ)

ξ − x
dξ, (11)

then (1) becomes
dP
dx

= π. (12)
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Numerical method

▶ Using the central finite difference approximations to approximate dP/dx and
evaluating P at the mid-grid points where it can be evaluated, equation (12) becomes

Pi+1/2 − Pi−1/2

ξi+1/2 − ξi−1/2
= π, 1 ⩽ i ⩽ n − 1, (13)

where Pi±1/2 and ξi±1/2 are given by

Pi±1/2 = −
∫ 1

0

φξ(ξ)

ξ − ξi±1/2
dξ and ξi±1/2 =

i ± 1/2
n

, (14)

respectively.

9



Numerical method
▶ Assuming that the slope is constant in each sub-interval and by approximating φξ(ξ)

using forward differences, we obtain
n−1∑
j=0

(
φj+1 − φj

ξj+1 − ξj

)(
−
∫ ξj+1

ξj

1
ξ − ξi+1/2

dξ −−
∫ ξj+1

ξj

1
ξ − ξi−1/2

dξ

)
=

π

n
. (15)

▶ When evaluated

−
∫ ξj+1

ξj

dξ
ξ − ξi±1/2

= ln

∣∣∣∣ξj+1 − ξi±1/2

ξj+1 − ξi±1/2

∣∣∣∣ . (16)

▶ Equation (15) becomes, using (16)
n−1∑
j=0

(
φj+1 − φj

)
aij =

π

n2 , (17)

where ξi+1/2 − ξi−1/2 = ξj+1 − ξj = 1/n and 10



Numerical method

ai,j = ln

∣∣∣∣ (2j − 2i + 1)2

(2j − 2i + 3)(2j − 2i − 1)

∣∣∣∣ . (18)

▶ Expanding the summation and evaluating the resulting equation at i = 1,2, ...,n − 1
generates a system of n − 1 linear equations in n + 1 unknowns. Imposing the
boundary condition φ(x0) = φ0, φx(0) = 0 and φ(xn) = 0, we are able to determine
three unknown constants to get an n − 1 system in n − 2 unknowns.

▶ Consequently, we have an over-determined system. Any n − 2 equations are
therefore sufficient to determine the remaining unknowns. To demonstrate this idea,
we set n = 5.
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Numerical method
▶ Equation (17) becomes

4∑
j=0

(
φj+1 − φj

)
aij =

π

25
, 1 ⩽ i ⩽ 4. (19)

▶ Expanding the summation and collecting φ terms, we get

−ai0φ0+(ai0−ai1)φ1+(ai1−ai2)φ2+(ai2−ai3)φ3+(ai3−ai4)φ4+ai4φ5 =
π

25
. (20)

▶ From the boundary conditions:

φx(0) = 0 =⇒ n(φ1 − φ0) = 0 =⇒ φ1 = φ0 (21)

φ(1) = 0 =⇒ φ5 = φ(1) = 0. (22)
▶ Assuming that φ(0) = 3π

8 implies that φ1 = φ0 = 3π
8 .
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Numerical method
▶ Equation (20) becomes

(ai1 − ai2)φ2 + (ai2 − ai3)φ3 + (ai3 − ai4)φ4 =
π

25
+ ai1

3π
8
, 1 ⩽ i ⩽ 4. (23)

▶ When evaluated (23) generates the linear system given by

(a11 − a12)φ2 + (a12 − a13)φ3 + (a13 − a14)φ4 =
π

25
+

3π
8

a11, (24)

(a21 − a22)φ2 + (a22 − a23)φ3 + (a23 − a24)φ4 =
π

25
+

3π
8

a21, (25)

(a31 − a32)φ2 + (a32 − a33)φ3 + (a33 − a34)φ4 =
π

25
+

3π
8

a31, (26)

(a41 − a42)φ2 + (a42 − a43)φ3 + (a43 − a44)φ4 =
π

25
+

3π
8

a41. (27)
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Numerical results
Graph of φ(x) plotted against x when n = 5.
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Figure 1: Graph of φ(x) when 1 ⩽ i ⩽ 3.
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Figure 2: Graph of φ(x) when 2 ⩽ i ⩽ 4. 14



Numerical results
Graph of φ(x) plotted against x when n = 100.
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Figure 3: Graph of φ(x) when 1 ⩽ i ⩽ 98.
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Figure 4: Graph of φ(x) when 2 ⩽ i ⩽ 99. 15



Numerical results
Relative error for n = 100.
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Figure 5: Relative error when 1 ⩽ i ⩽ 98.
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Figure 6: Relative error when 2 ⩽ i ⩽ 99. 16



Numerical method
Problem reformulation and regularisation

▶ It is clear from the analytical solution (10) that φ(x) approaches zero like
√

1 − x as
x → 1. Consequently, a singularity emerges in the slope of φ(x) at x = 1, that is,
φx(x) → ∞ as x → 1.

▶ This singularity at x = 1 poses a challenge to the numerical scheme employed in the
preceding section. To overcome this challenge, we introduce the following
transformation φ(x) = h(y), where y =

√
1 − x .

▶ Under these circumstances, (1) becomes

1
π

d
dy

(
−
∫ 1

0

hξ(ξ)

ξ − x
dξ

)
= 1, 0 ⩽ x ⩽ 1, (28)

subject to the boundary conditions h(0) = 0,hy (1) = 0 and h(1) = 3π/8.
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Numerical method
▶ Let

P = −
∫ 1

0

hη(η)dη
y2 − η2 , (29)

so that
dP
dy

= 2πy . (30)

▶ Then, the central finite differences can be used to approximate Py to get
Pi+1/2 − Pi−1/2

ηi+1/2 − ηi−1/2
=

2πi
n

, (31)

where Pi±1/2 and ηi±1/2 are respectively given by

Pi±1/2 = −
∫ 1

0

hη(η)dη
η2

i±1/2 − η2
, and ηi±1/2 =

i ± 1/2
n

. (32a-b)
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Numerical method

▶ Assuming that the slope dh/dη is constant in each sub-interval and approximating
hη(η) using forward differences, we obtain

Pi±1/2 =
n−1∑
j=0

(
hj+1 − hj

ηj+1 − ηj

)∫ ηj+1

ηj

dη
η2

i±1/2 − η2
. (33)

▶ When evaluated

−
∫ ηi+1

ηi

dη
η2

i±1/2 − η2
=

1
2ηi±1/2

ln

∣∣∣∣∣
(
ηi±1/2 − ηj

) (
ηi±1/2 + ηj+1

)(
ηi±1/2 + ηj

) (
ηi±1/2 − ηj+1

)∣∣∣∣∣ . (34)
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Numerical method
▶ Substituting (33) into (31) we obtain, using (34)

n−1∑
j=0

(hj+1 − hj)bij =
2πi
n4 , (35)

where

bij =
1

2i + 1
ln

∣∣∣∣(2i + 2j + 3)(2i − 2j + 1)
(2i + 2j + 1)(2i − 2j − 1)

∣∣∣∣− 1
2i − 1

ln

∣∣∣∣(2i + 2j + 1)(2i − 2j − 1)
(2i + 2j − 1)(2i − 2j − 3)

∣∣∣∣ .
(36)

▶ When evaluated for any value of n, equation (35) will generate a system of n − 1 linear
equations in n − 2 unknowns. Since the transformation removed the singularity in
the slope of h(x) at x = 1, any combination of n − 2 equations can be used to solve
the system.
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Numerical results
Graph of φ(x) plotted against x when n = 5.
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Figure 7: Graph of φ(x) when 1 ⩽ i ⩽ 3.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

1.2
For n=5

Numerical

Analytical

Figure 8: Graph of φ(x) when 2 ⩽ i ⩽ 4. 21



Numerical results
Graph of φ(x) plotted against x when n = 100.
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Figure 9: Graph of φ(x) when 1 ⩽ i ⩽ 98.
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Figure 10: Graph of φ(x) when 2 ⩽ i ⩽ 99. 22



Numerical results
Relative error for n = 100.
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Figure 11: Relative error when 1 ⩽ i ⩽ 98.
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Figure 12: Relative error when 2 ⩽ i ⩽ 99. 23
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Conclusion

▶ This study focused on exploring numerical solutions for Cauchy-type singular integral
equations of the first kind.

▶ Two distinct numerical techniques were employed to compute solutions, and the
obtained results were compared with the analytical solution to assess the accuracy of
these methods.

▶ Relative error plots from the numerical approaches were generated and analyzed.
▶ A notable challenge emerged due to the singularity in φx(x) at x = 1, which

disrupted the conventional finite difference scheme.
▶ To address this challenge, we opt for an alternative approach by solving a regularized

problem.
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