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Introduction and background



Introduction and background s §
Singular Integral Equations

» Singular integral equations of the first kind with Cauchy-type kernels are a class of
mathematical equations that arise in the field of integral equations.

» The general form of a singular integral equation of the first kind with a Cauchy-type
kernel is given by:
® p(t)
][ —=dt=1f(x), a<x<b, (1)
a [—X
where the forcing function f(x) is given and the function ¢ () is the unknown
function to be determined.

» The singularity in the kernel occurs when x is equal to f, leading to challenges in the
analysis and solution of these equations.



Introduction and background s §
Singular Integral Equations

» Singular integral equations play a crucial role in various branches of applied
mathematics and physics, such as potential theory, elasticity, and fluid dynamics.

» They often arise in problems involving boundary value conditions and are used to
model physical phenomena in diverse areas.

» The study of singular integral equations involves techniques from functional analysis,
complex analysis, and integral transforms.

> Solving these equations can be challenging due to their singular nature, and various
methods, such as regularization techniques, numerical methods, and special
function expansions, are often employed to obtain solutions.
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Cauchy-type singular integral equation

> Consider the problem of solving the singular integral equation given by [1]

1d [ [Teeld) ) _
de<]€ K9] =1, o<x<t, @)

subject to the boundary conditions

ox(0) =0, ¢(1)=0. (3a-b)

> We want to solve (2) subject to (3a-b) both analytically and numerically.
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> We begin by integrating equation (2) with respect to x, resulting in the derivation of
the characteristic singular integral equation:

;

ve(€) 4

—2dé =nx + A (4)
R

where Ais an arbitrary constant.

> Using the standard inversion formula [2], we obtain the inverse of (4) as

][\/ &1 —=¢ 7T£+A de. (5)

C
) = e AT
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» When evaluated

][ Ve — 7r§—|—A d{
> Integration of (5 )ylelds, given (6)

p(x) =2Csin~" (Vx) + ()2( + % + :) Vx(1 —x)+ B, (7)

where A, B and C are unknown constants.
» The solution in (7) contains three unknown constants. We will therefore need three

conditions to solve for the three unknowns. We will now assume

o(0)= . ®

2 A7T
(1 +4x—8x)+7(1—2x). (6)
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Analytical solution wis §

» Using the boundary conditions (2) and (8), we find

3
A= —m, B:ﬁandC——

| W

» Therefore, the analytical solution is given by

o(x) = —gsin‘1 (Vx) + (2 - )2(> x(1=-x)+ —. (10)
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A conventional numerical discretisation

» We divide the interval [0, 1] into n-equally spaced sub-intervals [¢;, £, 1] of length
h=1/nwhere0 <j<n-—1.
> Let P(x) be defined as

|
Po0 = 280e (11

then (1) becomes
f =7 (12)



Numerical method s §

> Using the central finite difference approximations to approximate d P/dx and
evaluating P at the mid-grid points where it can be evaluated, equation (12) becomes

Pii1/— Pi
2T 2 L 1<i<n-T, (13)
iv1/2 = &ic1)2

where Pi.q /2 and ;. 2 are given by

] .
o e (§) o ix1)2
Pit1/2 —]{) € i d€ and §irq/2 = P (14)

respectively.
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» Assuming that the slope is constant in each sub-interval and by approximating ¢¢(§)
using forward differences, we obtain

n—1 € €t
Pji+1 — Pj j+ ¥d [y ¥d 7 L5
j_zo ( §r1 —§ > (]é, §—&ivy2 ¢ g §—&i-12 < n W

» When evaluated

][5’*1 df g[S =S| (16)
g S8 §jr1 — ix1/2
» Equation (15) becomes, using (16)
n—1
> (e =) aj = %7 (17)
j=0

where & 12 — §i_1/2 = jy1 — §=1/nand
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(2j —2i +1)?

(2j—2i+3)(2j —2i—1)| (18)

ajj= In

» Expanding the summation and evaluating the resulting equationati=1,2,...,.n — 1
generates a system of n — 1 linear equations in n + 1 unknowns. Imposing the
boundary condition ¢(Xg) = o, ¥x(0) = 0 and ¢(x,) = 0, we are able to determine
three unknown constants to get an n — 1 system in n — 2 unknowns.

» Consequently, we have an over-determined system. Any n — 2 equations are
therefore sufficient to determine the remaining unknowns. To demonstrate this idea,

wesetn = 5.
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Numerical method

» Equation (17) becomes

4
™ .

E g01+1 a,j:%,1<1<4

j=0

» Expanding the summation and collecting ¢ terms, we get

—ajopo+(aio—ain)p1+(ain—ai)p2+(an—ais)ps+(ais—ais) pataiaps =

» From the boundary conditions:
©x(0) =0 = n(p1 — o) =0 = v1 =1¢o
(1) =0 = ¢5=p(1)=0.

> Assuming that (0) = |mpl|es that o1 = o = 3—“

T
25

\\‘Hﬁé
i &

(20)

(21)
(22)
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Numerical method

» Equation (20) becomes

T 37
(@it — ai2)2 + (aiz — @ia) s + (ais — @ia)va = 5 + At g

» When evaluated (23) generates the linear system given by

T 37T
(@1 — aiz)ez + (@12 — ar3)es + (@13 — a14)ps = 5 + g-ar,

T 37
(@21 — @22)p2 + (322 — @3)p3 + (823 — @za)pa = 55 T g @t

T 37
(@31 — as2)p2 + (@s2 — a@s3)ps + (a33 — asa)pa = 55 T g a8t

37
——au1.

s
(841 — as2)v2 + (12 — as3)ws + (a3 — asa)ps = 52 + 3

1<i<4.

\,‘\‘Hﬁé
i &
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Numerical results

Graph of ¢(x) plotted against x when n = 5.
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Figure 1: Graph of po(x) when 1 <7< 3. Figure 2: Graph of p(x) when2 </ < 4.
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Numerical results

Graph of p(x) plotted against x when n = 100.
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Figure 3: Graph of p(x) when 1 </ < 98.
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Figure 4: Graph of p(x) when 2 </ < 99.
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Numerical results

Relative error for n = 100.
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Numerical method s §

Problem reformulation and regularisation

> Itis clear from the analytical solution (10) that ¢(x) approaches zero like /1 — Xx as
x — 1. Consequently, a singularity emerges in the slope of ¢(x) at x = 1, that is,
ox(X) = ocoasx — 1.

» Thissingularity at x = 1 poses a challenge to the numerical scheme employed in the
preceding section. To overcome this challenge, we introduce the following
transformation (x) = h(y), where y = /1 — x.

» Under these circumstances, (1) becomes

1d [ [Th(9),.\
my(i Fljde) =1 o<x<, (28)

subject to the boundary conditions h(0) = 0, hy(1) = 0and h(1) = 37/8.
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Numerical method

> Let ]
p_ ][ hy ()
0o ¥y2—n?’
h
so that oP

» Then, the central finite differences can be used to approximate Py to get

Piy1/2 = Picajz _ 2mi

)

Nit+1/2 — Ni—1/2 n
where P;1 /5 and 7.1 /o are respectively given by

T h (n)d i+1/2
_ m\1)an , _
Pit1/2 ]{) 77/211/2 ) and  njt1/2 = e

(32a-b)
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Numerical method s §

> Assuming that the slope dh/dn is constant in each sub-interval and approximating
h,,(n) using forward differences, we obtain

n—1 i

hit1 = hp\ [T+ dn

Pisijp = (j. — j.) / S5 (33)
o N Ty M N

» When evaluated

(nii1/2 — 77j) (77&1/2 + "7j+1)

) (34)
("7/11/2 + 77j) (77ij:1/2 - ?7/+1)

][77:'4—1 dn 1i |
= n
nj 77/2i1 /2= ”? 2niz1/2
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Numerical method s §

» Substituting (33) into (31) we obtain, using (34)

n—1

2ri
jzo(h/+1 - )by = 7. (35)

where
o n‘(2i+2j+3)(2i—2j+1)‘_ 1 n‘(2i+2j+1)(2i—2j—1)
P21 | (2i+2j+1)2i—-2[ 1) 2i—1  |(2i+2j—1)(2i—2j-3)|°

(36)
» When evaluated for any value of n, equation (35) will generate a system of n — 1 linear
equations in n — 2 unknowns. Since the transformation removed the singularity in
the slope of h(x) at x = 1, any combination of n — 2 equations can be used to solve
the system.
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Numerical results

Graph of ¢(x) plotted against x when n = 5.
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Figure 7: Graph of o(x) when 1 < /< 3.
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Graph of p(x) plotted against x when n = 100.
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Figure 9: Graph of p(x) when 1 </ < 98. Figure 10: Graph of po(x) when2 </ < 99. 22



Numerical results

Relative error for n = 100.
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Figure 11: Relative error when 1 </ < 98.
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| 2

This study focused on exploring numerical solutions for Cauchy-type singular integral
equations of the first kind.

Two distinct numerical techniques were employed to compute solutions, and the
obtained results were compared with the analytical solution to assess the accuracy of
these methods.

> Relative error plots from the numerical approaches were generated and analyzed.

A notable challenge emerged due to the singularity in px(x) at x = 1, which
disrupted the conventional finite difference scheme.

To address this challenge, we opt for an alternative approach by solving a regularized
problem.
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